From Preference Elicitation to Explaining Decisions: a Dialectical Perspective

Habilitation à Diriger les Recherches Defense

Wassila Ouerdane
December 8th, 2022

université
PARIS-SACLAY

- My research domain: Artificial Intelligence (Knowledge Representation and Reasoning), Decision Theory;
- Focus of today: our contributions in Multiple Criteria Decision Aiding

Multiple Criteria Decision Aiding (MCDA)

- At least two actors: an expert, a user;
- set of alternatives/options described (evaluated) on several conflicting point of view/ criteria;

	Comfort	Restaurant	Commute time	Cost
h_{A}	4^{\star}	no	35 min	$120 \$$
h_{B}	4^{\star}	yes	50 min	$160 \$$
h_{C}	2^{\star}	yes	20 min	$50 \$$
h_{D}	2^{\star}	no	30 min	$40 \$$

- A decision problem: is option h_{A} better than option h_{B} ? Is option h_{C} good enough? ...
- Sparse preferences between some options;
- Aggregation model containing aggregation procedures

Multiple Criteria Decision Aiding (MCDA)

- At least two actors: an expert, a user;
- set of alternatives/options described (evaluated) on several conflicting point of view/ criteria;
- A decision problem: is option h_{a} better than option h_{b} ? Is option h_{c} good enough? ...
- Sparse preferences between some options;
- Aggregation model containing aggregation procedures

An illustrative Example

Options	Size	Material	Price	Colour	Style
a	small	Steel	450	Red	Classical
b	big	Leather	300	White	Fashion
c	medium	Steel	320	Pink	Classical
d	small	Leather	390	Pink	Sport

(1) DA: Given your information, b is the best option.
(2) DM: Why is that the case?
(3) DA: Because b is globally better than all other options
(4) DM: What does that mean?
(5) DA: Well... b is top on a majority of criteria considered: the price, the colour, and especially the style, it is so trendy!
(6) DM: But, why b is better than c on the price?
(7) DA: Because c is 20 euros more expensive than b.
(8) DM: I agree, but I see that the guarantee is very expensive especially for this watch. In fact I'm not sure to want the guarantee.
(9) DA: But c remains 5 euros more expensive than b.
(10) DM: I see, but this difference is not significant. And also I changed my mind: I would rather to have a classical model, I think it's more convenient for a daily use.
(11) DA: OK. In this case I recommend c as the best choice.
(12) DM: ...

An illustrative Example

Options	Size	Material	Price	Colour	Style
a	small	Steel	450	Red	Classical
b	big	Leather	300	White	Fashion
c	medium	Steel	320	Pink	Classical
d	small	Leather	390	Pink	Sport

(1) DA: Given your information, b is the best option
(2) DM: Why is that the case?
(3) DA: Because b is globally better than all other options
(4) DM: What does that mean?
(5) DA: Well... b is top on a majority of criteria considered: the price, the colour, and especially the style , it is so trendy!
(6) DM: But, why b is better than c on the price?
(7) DA: Because c is 20 euros more expensive than b.
(8) DM: I agree, but I see that the guarantee is very expensive especially for this watch. In fact I'm not sure to want the guarantee.
(9) DA: But c remains 5 euros more expensive than b.
(10) DM: I see, but this difference is not significant. And also I changed my mind: I would rather to have a classical model, I think it's more convenient for a daily use.
(11) DA: OK. In this case I recommend c as the best choice.
(12) DM: ...

MCDA with an Artificial agent !

Our research issues

Preference Learning and Elicitation

Research issues

Research issues

- Preference modeling issue: how to represent the user's preferences?
- Computational issue: how to build and provide efficient device?

Our Contributions: Mathematical and Computational Tools

Preference Learning- Overview of our Results

Overview of our Results-Focus NCS

NCS: Non-Compensatory Sorting

- an ordered set $C^{1} \prec \cdots \prec C^{p}$ of p predefined categories
- a set of objects to be sorted : $\mathbb{X}=\prod_{i \in \mathcal{N}} \mathbb{X}_{i}$ with $\mathcal{N}=\{1, \ldots, n\}$
- A total preorder, noted \succsim_{i} on $X_{i}, i \in \mathcal{N}$
- approved sets $\left\langle\mathcal{A}_{i}^{k}\right\rangle_{i \in \mathcal{N}, k \in[2 . \text {.p] }}$ defined by a set of limiting profiles $\left\langle b_{i}^{k}\right\rangle_{i \in \mathcal{N}, k \in[2 . . p]}$
- a set of sufficient coalitions $\left\langle\mathcal{T}^{k}\right\rangle_{k \in[2 \text {. .p] }}$ declined per boundary.

$$
\operatorname{NCS}_{\omega}(x)=C^{k} \Leftrightarrow \begin{cases}\left\{i \in \mathcal{N}: x \in \mathcal{A}_{i}^{k}\right\} & \in \mathcal{T}^{k} \tag{1}\\ \text { and }\left\{i \in \mathcal{N}: x \in \mathcal{A}_{i}^{k+1}\right\} & \notin \mathcal{T}^{k+1}\end{cases}
$$

where $\omega=\left(\left\langle\mathcal{A}_{i}^{k}\right\rangle_{i \in \mathcal{N},}, k \in[2 . . p],\left\langle\mathcal{T}^{k}\right\rangle_{k \in[2 . . p]}\right)$
[Bouyssou and Marchant, 2007a, 2007b]

NSC - Learning/Disaggregation Step

Inputs: Reference assignments

	Cost	Acceleration	Breaking	Road hold	Category
m_{1}	$16973 €$	29.0 sec.	2.66	2.5	$\star \star$
m_{2}	$18342 €$	30.7 sec.	2.33	3	\star
m_{3}	$15335 €$	30.2 sec.	2	2.5	$\star \star$
m_{4}	$18971 €$	28.0 sec.	2.33	2	$\star \star$
m_{5}	$17537 €$	28.3 sec.	2.33	2.75	$\star \star \star$
m_{6}	$15131 €$	29.7 sec.	1.66	1.75	\star

NSC - Learning/Disaggregation Step

Inputs: Reference assignments

	Cost	Acceleration	Breaking	Road hold	Category
m_{1}	$16973 €$	29.0 sec.	2.66	2.5	$\star \star$
m_{2}	$18342 €$	30.7 sec.	2.33	3	\star
m_{3}	$15335 €$	30.2 sec.	2	2.5	$\star \star$
m_{4}	$18971 €$	28.0 sec.	2.33	2	$\star \star$
m_{5}	$17537 €$	28.3 sec.	2.33	2.75	$\star \star \star$
m_{6}	$15131 €$	29.7 sec.	1.66	1.75	\star

Profile	C	A	B	R
$\star / \star \star$	$?$	$?$	$?$	$?$
$\star \star / \star \star \star$	$?$	$?$	$?$	$?$

Expected Outputs: Set of sufficient coalitions + Set of profiles

The Inv-NCS Problem

Finding a solution to an instance of the Inv-NCS problem:

$$
\left(\mathcal{N}, \mathbb{X},\left\langle\succsim_{i}\right\rangle_{i \in \mathcal{N}}, \mathbb{X}^{\star},\left\{C^{1} \prec \ldots \prec C^{p}\right\}, \alpha\right)
$$

where:

- \mathcal{N} is a set of criteria;
- \mathbb{X} is a set of alternatives;
- $\left\langle\succsim_{i}\right\rangle_{i \in \mathcal{N}} \in \mathbb{X}^{2}$ are preferences on criterion $i, i \in \mathcal{N}, \succsim_{i} \subset \mathbb{X}^{2}$ is a total pre-ordering of alternatives according to this criterion;
- $\mathbb{X}^{\star} \subset \mathbb{X}$ is a finite set of reference alternatives;
- $\left\{C^{1} \prec \ldots \prec C^{p}\right\}$ is a finite set of categories totally ordered by exigence level.
- $\alpha: \mathbb{X}^{\star} \rightarrow\left\{C^{1} \prec \ldots \prec C^{p}\right\}$ is an assignment of \mathbb{X}^{\star} to the categories. for a given category $C^{h}, \alpha^{-1}\left(C^{h}\right)=\left\{x \in \mathbb{X}^{\star}: x \in C^{h}\right\}$.

Inv-NCS - Overview of our Results

Two SAT-based formulations [Belahcène et al., 2018a, 2018c; Tlili et al., 2022]

1. A SAT formulation based on Coalitions

- Explicit representation of the parameter space

2. A SAT formulation based on Pairwise Separation

- Approved sets are given;
- Intuition: for every pair of alternatives (g accepted, b rejected), is there at least one criterion approving g but not b ?
- Compact SAT formulation; and Inv-NCS is NP-complete
\leadsto The formulations are more efficient than state-of-the art MIP-based approach.

Inv-NCS - Overview of our Results

MaxSAT relaxations [Tlili et al., 2022]

- Take into account "noisy" data (imperfection in the assessment of performance, mistaken assignment, ...)
- Retrieve the model that restores "the most" examples of the Learning set.

Preference Learning - The Other contributions

- Majority Sorting Rule (MR-Sort)
- Parameters to learn: limiting profiles $\langle b\rangle$, weights (w), threshold (λ);
- Issue: How to deal with an ordered partition $\mathcal{C}=\left(C^{1}, \ldots, C^{h}, \ldots, C^{p}\right)$ that is not monotone w.r.t the natural order of the criterion scale?
- Contribution: taking into account single-peaked preferences - an exact approach and a heuristic approach [Minoungou et al., 2022].
- Ranking with Multiple reference Points (RMP)
- Parameters to learn: weights, reference points, and the lexicographic order on reference points;
- Contribution: A MIP-based approach [Olteanu et al., 2021], a heuristicbased approach [Liu et al., 2014], and a Boolean-based approach [Belahcène et al., 2023a]

XAI \& MCDA

Our research issues

Question 2

Given a decision model and a set of preference information, is there a principled way to define simple complete explanations supporting a recommendation/decision?

Explanation - Issues

- Computation: How difficult is it to produce an explanation?
- Simplicity: Can we keep the explanations simple enough to be processed by a human decision-maker?
- Completeness: Can we explain every 'true' result, that can be deduced from the preference information and the model?
- Soundness: Could we explain 'false' results, claiming the impossibility of an event that could happen or the possibility of an event that cannot happen?

Explanation - Key Principles [Coste-Marquis and Marquis, 2020; Miller, 2019]

- Explanation shall be rigorous (important decision)
\rightsquigarrow One shall bring proof (complete explanation);
- Explanation shall be understandable
\rightsquigarrow One shall define a language which relates directly to the preferential information (e.g. not include the weights), and be conveyed in an expressive language to the recipient of this explanation.
- Explanation shall be relevant
\rightsquigarrow One shall define what could be pertinent to focus on within the decision situation.
- Explanation shall be simple
\rightsquigarrow One shall define different levels of complexity. We want explanations to be "easy to process" by the recipient of the explanation.

Explanation in MCDA - Our Contributions

Explanation in MCDA - Our Contributions

Explanation in MCDA - Additive Model

- Preference derives from a value model

$$
\exists V \text { s.t. } x \succsim y \Longleftrightarrow V(x) \geq V(y)
$$

- Value is additive (i.e. $V(x)=\sum_{i} v_{i}\left(x_{i}\right)$)
- Case: binary evaluation

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
s_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$$
\omega=\langle 128,126,77,59,52,41,37\rangle
$$

Additive Model- Explaining a Pairwise Comparison

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
s_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$$
\omega=\langle 128,126,77,59,52,41,37\rangle
$$

$$
\left.\begin{array}{l}
\omega\left(s_{1}\right)=128+77+37=242 \\
\omega\left(s_{2}\right)=126+41+37=204
\end{array}\right\} \mathbf{s}_{1} \succ \mathbf{s}_{2}
$$

- Encoding: a vector $\{-1,0,+1\}^{n}$ of arguments in favour (pro) or against (con) or neutral (neu).

$$
\operatorname{pro}_{s_{1}}=\{\boldsymbol{a}, c\}, \operatorname{con}_{s_{1}}=\{\boldsymbol{b}, f\}, \text { while neu }=\{d, e, g\}
$$

Additive Model- Explaining a Pairwise Comparison

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
s_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$$
\omega=\langle 128,126,77,59,52,41,37\rangle
$$

$$
\left.\begin{array}{l}
\omega\left(s_{1}\right)=128+77+37=242 \\
\omega\left(s_{2}\right)=126+41+37=204
\end{array}\right\} \mathbf{s}_{1} \succ \mathbf{s}_{2}
$$

- Encoding: a vector $\{-1,0,+1\}^{n}$ of arguments in favour (pro) or against (con) s_{1}, or neutral (neu).

$$
\operatorname{pro}_{s_{1}}=\{\boldsymbol{a}, \boldsymbol{c}\}, \operatorname{con}_{s_{1}}=\{\boldsymbol{b}, \boldsymbol{f}\}, \text { while neu }=\{\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{g}\}
$$

Question: why s_{1} is preferred to s_{2} ?

Additive Model- Explaining a Pairwise Comparison

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
s_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$$
w=\langle 128,126,77,59,52,41,37\rangle
$$

$$
\left.\begin{array}{c}
\omega\left(s_{1}\right)=128+77+37=242 \\
\omega\left(s_{2}\right)=126+41+37=204
\end{array}\right\} \mathbf{s}_{1} \succ \mathbf{s}_{2}, \begin{array}{cr}
\\
\operatorname{pro}_{s_{1}}=\{a, c\}, \operatorname{con}_{s_{1}}=\{b, f\}, n e u=\{d, e, \boldsymbol{g}\}
\end{array}
$$

Our proposal -Step-wise Explanations:

$$
s_{1}(a c g) \succ(b f g) s_{2}
$$

Additive Model- Explaining a Pairwise Comparison

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
s_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$$
w=\langle 128,126,77,59,52,41,37\rangle
$$

$$
\left.\begin{array}{c}
\omega\left(s_{1}\right)=128+77+37=242 \\
\omega\left(s_{2}\right)=126+41+37=204
\end{array}\right\} \mathbf{s}_{1} \succ \mathbf{s}_{2}, \begin{array}{cr}
\\
\operatorname{pro}_{s_{1}}=\{a, c\}, \operatorname{con}_{s_{1}}=\{b, f\}, n e u=\{d, e, g\}
\end{array}
$$

Our proposal -Step-wise Explanations:

$$
s_{1}(a c g) \succ(b c g) \succ(b f g) s_{2}
$$

Additive Model- Explaining a Pairwise Comparison

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
S_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$$
\left.\begin{array}{c}
\omega\left(s_{1}\right)=128+77+37=242 \\
\omega\left(s_{2}\right)=126+41+37=204
\end{array}\right\} \mathbf{s}_{1} \succ \mathbf{s}_{2}, ~(a, c\}, \operatorname{con}_{s_{1}}=\{b, f\}, \text { neu }=\{d, e, \boldsymbol{g}\}
$$

Our proposal -Step-wise Explanations:

Additive Model- Explaining a Pairwise Comparison

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
s_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$$
w=\langle 128,126,77,59,52,41,37\rangle
$$

$$
\left.\begin{array}{c}
\omega\left(s_{1}\right)=128+77+37=242 \\
\omega\left(s_{2}\right)=126+41+37=204
\end{array}\right\} \mathbf{s}_{1} \succ \mathbf{s}_{2}, \begin{array}{cr}
\\
\operatorname{pro}_{s_{1}}=\{a, c\}, \operatorname{con}_{s_{1}}=\{b, f\}, n e u=\{d, e, g\}
\end{array}
$$

Our proposal-Step-wISE Explanations:

$$
\begin{aligned}
& \mathrm{s}_{1}(a c g) \succ(b c g) \succ(b f g) \mathrm{s}_{2} \\
& \mathrm{~s}_{1}(a c g) \succ(b e f) \succ(b f g) \mathrm{s}_{2} \quad
\end{aligned}
$$

the $1^{\text {st }}$ comparison is complex as it involves 6 criteria.

$$
\begin{gathered}
s_{1}(a c g) \succ(a b c) \succ(b f g) s_{2} x \\
\left(242=\omega_{a}+\omega_{c}+\omega_{g}<\omega_{a}+\omega_{b}+\omega_{c}=331\right)
\end{gathered}
$$

Additive Model- Explaining a Pairwise Comparison

	a	b	c	d	e	f	g
s_{1}	\checkmark	x	\checkmark	x	x	x	\checkmark
s_{2}	x	\checkmark	x	x	x	\checkmark	\checkmark

$w=\langle 128,126,77,59,52,41,37\rangle$

$$
\left.\begin{array}{c}
\omega\left(s_{1}\right)=128+77+37=242 \\
\omega\left(s_{2}\right)=126+41+37=204
\end{array}\right\} \mathbf{s}_{1} \succ \mathbf{s}_{2}, \begin{array}{cr}
\\
\operatorname{pro}_{s_{1}}=\{a, c\}, \operatorname{con}_{s_{1}}=\{b, f\}, n e u=\{d, e, \boldsymbol{g}\}
\end{array}
$$

Our proposal -Step-wise Explanations:

$$
s_{1}(a c g) \succ(b c g) \succ(b f g) s_{2}
$$

- $\mathrm{S}_{1}(\mathbf{a c g})$ is preferred over $\mathbf{b c g}$, and that $\mathbf{b c g}$ is preferred over (bfg) S_{2}, so that our conclusion should hold, following a transitive reasoning.
- exhibits a collection of statements aiming at proving the decision.

Additive Model- Explaining a Pairwise Comparison

- Break down the recommendation into "simple" statements;
- the sequence of statements formally support the recommendation.

- Principle-based approach: each scheme is attached to a number of well understood properties of the underlying decision model (e.g. transitivity)
- Cognitively bounded: the statements are constrained to remain "easy" to grasp

Additive Model- Covering scheme

For the conclusion: $(b f g, c d e)$. The premise $[(f g, c),(b, d e)]$ constitutes a covering scheme:

$$
(f g, c),(b, d e) \xrightarrow{c o v}(b f g, c d e)
$$

Proof diagram

$$
\left.\begin{array}{l}
f g \succ c \xrightarrow{c p} b f g \succ b c \\
\boldsymbol{b} \succ d e \xrightarrow{c p} b c \succ c d e
\end{array}\right\} \xrightarrow{\operatorname{tr}} b f g \succ c d e
$$

Visual representation

Narrative representation
"As, all other things being equal, having free breakfast and wifi access is preferred to having a swimming pool $(\mathbf{f g}, \mathbf{c})$, and being close to the city is preferred than having a sports hall and a low tourist tax (b, de), we get that (bfg, cde)"

Our Contributions- Argument Schemes for the Additive Model

For a fully specified model:

- \# argument schemes ~\# patterns of reasoning
- \# classes of difficulty of statements
- Complexity results on the existence of an explanation;
- Computing Explanations using ILP;
- Promising experimental results on the explanatory power of the covering scheme.

Our Explainability Contributions- The Big Picture

[DA2PL, 2018, 2016]

Dialectical Tools

Our research issues

Given a decision model and a set of preference information, is there a principled way to define simple complete explanations supporting a recommendation/decision?

Among Challenges

With multiple criteria context, there are many possible decision models. So when deciding whether $a \succ b$ globally, you may use e.g.:

- simple majority ($\pi_{S M}$)-count criteria for $a \succ b$ vs. $b \succ a$
- simple weighted majority ($\pi_{s w m}$)-same but with weighted criteria
- mean model $\left(\pi_{M}\right)$-sum of utilities of items for each criterion
- weighted sum model ($\pi_{w s}$)-same but with weighted criteria
- outranking model-similar to $\pi_{\text {swm }}$ but includes a veto notion
- and many more...

Among Challenges!

With multiple criteria context, there are many possible decision models. So when deciding whether $a \succ b$ globally, you may use e.g.:

- simple majority ($\pi_{S M}$) -count criteria for $a \succ b$ vs. $b \succ a$
- simple weighted majority ($\pi_{s w M}$)-same but with weighted criteria
- mean model $\left(\pi_{M}\right)$-sum of utilities of items for each criterion
- weighted sum model ($\pi_{w s}$)-same but with weighted criteria
- outranking model-similar to $\pi_{s w m}$ but includes a veto notion
- and many more...

Questions:

- is there a principled way to do deal with the multiplicity of models?
- how, in practice, should such interaction be regulated?

Our contributions - Navigating among Decision Models

- We adopt an axiomatic approach
- Idea: to each model can be attached properties satisfied, e.g.:
- cardinality: the difference of performance is meaningful
- non anonymity: criteria are not exchangeable
- Veto property
- ...
- least specific model is the one that satisfies more properties;

Our contributions - Argumentation-based Dialogue

- Rely on Multi-Agent Systems tools: interaction protocol, argumentation theory,

Speech acts at each iteration (grey nodes: DM, white nodes: DA).
Key locutions:

- Challenge (ϕ)-requests some statement that can serve as a basis for justifying or explaining ϕ.
- $\operatorname{Argue}(\phi, p)-p$ is an explanation of ϕ.

How it works? Example

Suppose that a user has to rank four options, e.g. hotels $\{a, b, c, d\}$ evaluated on a set of criteria:
$\left\{c_{1}\right.$: price, c_{2} : location, c_{3} : stars, c_{4} : breakfast, $c_{5}:$ rating $\}$.

	a	b	c	d
price	80	180	120	60
location	close	far	very far	very close
stars	\star	$\star \star \star \star$	$\star \star \star$	$\star \star$
breakfast	coffee machine	mini buffet	full buffet	none
rating	$120 / 300$	$3 / 300$	$267 / 300$	$278 / 300$

Which provides default preferential information:

$$
\begin{array}{ll}
\text { price : } & d \succ_{c_{1}} a \succ_{c_{1}} c \succ_{c_{1}} b ; \\
\text { location: } & d \succ_{c_{2}} a \succ_{c_{2}} a \succ_{c_{2}} c ; \\
\text { stars: } & b \succ_{c_{3}} c \succ_{c_{3}} a \succ_{c_{3}} d ; \\
\text { breakfast: } & c \succ_{c_{4}} b \succ_{c_{4}} a \succ_{c_{4}} d \text {; } \\
\text { rating: } & b \succ_{c_{5}} a \succ_{c_{5}} c \succ_{c_{5}} d .
\end{array}
$$

How it works? Example

$$
\begin{aligned}
& \mathcal{K B}_{P}^{(1)} \text { contains all statements }\left[x \succ_{c_{i}} y\right] \\
& \mathcal{K B}_{\phi}^{(1)}=\emptyset \\
& \phi_{c}^{(1)}=[b \succ a \succ c \succ d] \\
& \operatorname{miss}\left(\phi_{c}^{(1)}\right)=\phi_{c}^{(1)}
\end{aligned}
$$

How it works? Example

$$
\begin{aligned}
& \mathcal{K B}_{P}^{(1)} \text { contains all statements }\left[x \succ c_{c_{i}} y\right] \\
& \mathcal{K B}_{\phi}^{(1)}=\emptyset \\
& \phi_{c}^{(1)}=[b \succ a \succ c \succ d] \\
& \operatorname{miss}\left(\phi_{c}^{(1)}\right)=\phi_{c}^{(1)}
\end{aligned}
$$

$$
\mathrm{DA}: \operatorname{Assert}\left(\phi_{1}^{(1)}\right), \phi_{1}^{(1)}=\phi_{c}^{(1)}
$$

How it works? Example


```
\(\mathcal{K B}_{P}^{(1)}\) contains all statements \(\left[x \succ_{c_{i}} y\right.\) ]
\(\mathcal{K} \mathcal{B}_{\phi}^{(1)}=\emptyset\)
\(\phi_{c}^{(1)}=[b \succ a \succ c \succ d]\)
\(\operatorname{miss}\left(\phi_{c}^{(1)}\right)=\phi_{c}^{(1)}\)
```

DM:Challenge $\left(\phi_{3}^{(1)}\right), \phi_{3}^{(1)}=\{[b \succ a]\}$
Note: $\phi_{3}^{(1)} \subseteq \phi_{c}^{(1)}=[b \succ a \succ c \succ d]$

How it works? Example

$$
\begin{aligned}
& \mathcal{K B}_{P}^{(1)} \text { contains all statements }\left[x \succ \succ_{c_{i}} y\right] \\
& \mathcal{K B}_{\phi}^{(1)}=\emptyset \\
& \phi_{c}^{(1)}=[b \succ a \succ c \succ d] \\
& \operatorname{miss}\left(\phi_{c}^{(1)}\right)=\phi_{c}^{(1)}
\end{aligned}
$$

DA:Argue $\left(\phi_{5}^{(1)}, p_{5}^{(1)}\right)$,
$\phi_{5}^{(1)}=\{[b \succ a]\}$,
$p_{5}^{(1)}=\left\{\left[b \succ_{c_{3}} a\right],\left[b \succ_{c_{4}} a\right],\left[b \succ_{c_{5}} a\right]\right\}$

How it works? Example


```
\(\mathcal{K} \mathcal{B}_{P}^{(1)}\) contains all statements \(\left[x \succ c_{i} y\right.\) ]
\(\mathcal{K} \mathcal{B}_{\phi}^{(1)}=\emptyset\)
\(\phi_{c}^{(1)}=[b \succ a \succ c \succ d]\)
\(\operatorname{miss}\left(\phi_{c}^{(1)}\right)=\phi_{c}^{(1)}\)
```

DM:Contradict $\left(\phi_{4}^{(1)}\right), \phi_{4}^{(1)}=\{[a \succ b]\}$

How it works? Example

$$
\begin{aligned}
& \mathcal{K B}_{P}^{(1)} \text { contains all statements }\left[x \succ \succ_{c_{i}} y\right] \\
& \mathcal{K B}_{\phi}^{(1)}=\emptyset \\
& \phi_{c}^{(1)}=[b \succ a \succ c \succ d] \\
& \operatorname{miss}\left(\phi_{c}^{(1)}\right)=\phi_{c}^{(1)}
\end{aligned}
$$

DA:Challenge $\left(\phi_{6}^{(1)}\right), \phi_{6}^{(1)}=\{[a \succ b]\}$

How it works? Example

$$
\begin{aligned}
& \mathcal{K B}_{P}^{(1)} \text { contains all statements }\left[x \succ \succ_{c_{i}} y\right] \\
& \mathcal{K B}_{\phi}^{(1)}=\emptyset \\
& \phi_{c}^{(1)}=[b \succ a \succ c \succ d] \\
& \operatorname{miss}\left(\phi_{c}^{(1)}\right)=\phi_{c}^{(1)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { DM:Argue }\left(\phi_{7}^{(1)}, p_{7}^{(1)}\right), \phi_{7}^{(1)}=\{[a \succ b]\} \\
& p_{7}^{(1)}=\left\{\left[a \succ_{c_{1}} b\right],\left[a \succ c_{2} b\right]\right. \\
& \left.\left[c_{1}=\text { strong }\right],\left[c_{2}=\text { strong }\right]\right\}
\end{aligned}
$$

How it works? Example

$$
\begin{aligned}
& \mathcal{K B}_{P}^{(2)}=\mathcal{K} \mathcal{B}_{P}^{(1)} \cup\left\{\left[c_{1}, c_{2}=\text { strong }\right]\right\} \\
& \mathcal{K B}_{\phi}^{(2)}=\emptyset \\
& \phi_{c}^{(2)}=[d \succ a \succ b \succ c] \\
& \operatorname{miss}\left(\phi_{c}^{(2)}\right)=\phi_{c}^{(2)}
\end{aligned}
$$

Note: $\alpha_{c_{1}}$ and $\alpha_{c_{2}}$ set to 2
$\alpha_{c_{3}}, \alpha_{C_{4}}, \alpha_{c_{5}}$ set to 1
so $d \succ a$
:
:

Dialectical Vision - Summary

With the idea that preferential information feedback is triggered by the user facing actual recommendations, we formalized:

- a conceptual idea for navigating among models [Labreuche et al., 2015]
- an interaction protocol based on argumentation theory [Labreuche et al., 2015; Ouerdane et al., 2011], where:
- rules and conditions under which we can have a "coherent" interaction in a decision support context, are specified
- Termination can be guaranteed with very few assumptions
- Critics/feedback through Critical Questions (attached to argument schemes).

Summary

Summary of Our Contributions

- Axe 1- Methods for representing, acquiring and learning preferences
- Formal theory about preferences (representation, learning) and decisions
- Domains: Decision Theory, MCDA, Operational Research;
- Axe 2- Methods for constructing and generating explanations.
- Formal language to communicate the results (recommendations) and "convince" the user.
- Domains: Artificial Intelligence (KRR¹, Argumentation Theory, Logic)
- Axe 3-Methods and tools for structuring and conducing the interaction.
- Formal language to represent the dialogue/interactions and its outcomes;
- Domains: Artificial Intelligence (KRR, MAS², Argumentation theory)

[^0]Perspectives

Perspectives

Main topic: Explanation-based mixed initiative interaction How to?

- Interleave learning, recommendation and explanation tasks?
- Express and present an explanation?
- Model and manage inconsistency, uncertainty?
- Assess and evaluate the outcomes?
- ...

Perspectives

Main topic: Explanation-based mixed initiative interaction

For what?

- PhD Thesis of Dao Thauvin. Explanatory dialogue for the interpretation of visual scenes. Co-supervision with Stephane Herbin (ONERA) and Céline Hudelot (MICS). - Start 11/2022.
- Keywords: Computer Vision, XAI, Argumentation-based Dialogue

Perspectives

Main topic: Explanation-based mixed initiative interaction

For what?

- PhD Thesis Charlotte Calye. Interpretable AI methods for medical research on autoimmune diseases. Supervision, in collaboration with ScientaLab and Céline Hudelot (MICS) - Start 02/2023.
- Keywords: EHR (Electronic Health Records), XAI, Dialog Systems.

All this was not possible without...

- All my PhD students;
- My co-authors and colleagues;
- Family and friends.

Thank You for your Attention

References

Bibliography

国
Belahcène，K．，Labreuche，C．，Maudet，N．，Mousseau，V．，\＆Ouerdane，W． （2017a）．Explaining robust additive utility models by sequences of preference swaps．Theory and Decision，82（2），151－183．

Belahcène，K．，Labreuche，C．，Maudet，N．，Mousseau，V．，\＆Ouerdane，W． （2017b）．A model for accountable ordinal sorting．Proceedings of the 26th IJCAI，814－820．

Belahcène，K．，Labreuche，C．，Maudet，N．，Mousseau，V．，\＆Ouerdane，W． （2018a）．Accountable approval sorting．Proceedings of the 27th International Joint Conference on Artificial Intelligence（IJCAI 2018）．

国
Belahcène，K．，Labreuche，C．，Maudet，N．，Mousseau，V．，\＆Ouerdane，W． （2018b）．An efficient SAT formulation for learning multiple criteria non－compensatory sorting rules from examples．Computers \＆Operations Research，97，58－71．

Bibliography (cont.)

Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., \& Ouerdane, W. (2018c). An efficient SAT formulation for learning multiple criteria non-compensatory sorting rules from examples. Computers \& Operations Research, 97, 58-71.

Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., \& Ouerdane, W. (2019). Comparing options with argument schemes powered by cancellation. Proceedings of IJCAI-19, 1537-1543.

國 Belahcène, K., Mousseau, V., Ouerdane, W., Pirlot, M., \& Sobrie, O. (2023a). Ranking with multiple reference points: Efficient sat-based learning procedures. Computers \& Operations Research, 150, 106054.

泀
Belahcène, K., Mousseau, V., Ouerdane, W., Pirlot, M., \& Sobrie, O. (2023b). Ranking with multiple reference points: Efficient sat-based learning procedures. Computers \& Operations Research, 150, 106054.

Bibliography (cont.)

Bouyssou, D., \& Marchant, T. (2007a). An axiomatic approach to noncompensatory sorting methods in MCDM, I: the case of two categories. European Journal of Operational Research, 178(1), 217-245.

Bouyssou, D., \& Marchant, T. (2007b). An axiomatic approach to noncompensatory sorting methods in MCDM, II: more than two categories. European Journal of Operational Research, 178(1), 246-276.

- Coste-Marquis, S., \& Marquis, P. (2020). From Explanations to Intelligible Explanations [Workshop at KR'20]. 1st International Workshop on Explainable Logic-Based Knowledge Representation (XLoKR'20).

圊 Krantz, D., Luce, R., Suppes, P., \& Tversky, A. (1971). Foundations of measurement (Vol. 1: Additive and polynomial representations). Academic Press, New York.

Labreuche, C., Maudet, N., \& Ouerdane, W. (2011). Minimal and complete explanations for critical multi-attribute decisions. ADT, 121-134.

Bibliography (cont.)

围 Labreuche, C., Maudet, N., \& Ouerdane, W. (2012). Justifying dominating options when preferential information is incomplete. ECAI 2012., 486-491.

R Labreuche, C., Maudet, N., Ouerdane, W., \& Parsons, S. (2015). A dialogue game for recommendation with adaptive preference models. Proceedings AAMAS, 959-967.
Leroy, A., Mousseau, V., \& Pirlot, M. (2011). Learning the parameters of a multiple criteria sorting method. International Conference on Algorithmic Decision Theory, 219-233.
R Liu, J., Ouerdane, W., \& Mousseau, V. (2014). A metaheuristic approach for preference learning in multicriteria ranking based on reference points. Proceedings of the 2nd workshop "From multiple criteria Decision Aid to Preference Learning" (DA2PL), 76-86.
(Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-38.

Bibliography (cont.)

围
Minoungou, P., Mousseau, V., Ouerdane, W., \& Scotton, P. (2020). Learning an MR-sort model from data with latent criteria preference direction. The 5th workshop from multiple criteria Decision Aid to Preference Learning (DA2PL).

嘓 Minoungou, P., Mousseau, V., Ouerdane, W., \& Scotton, P. (2022). A MIP-based approach to learn MR-Sort models with single-peaked preferences. Annals of Operations Research.
. Olteanu, A. L., Belahcène, K., Mousseau, V., Ouerdane, W., Rolland, A., \& Zheng, J. (2021). Preference elicitation for a ranking method based on multiple reference profiles [to appear]. 40R: A Quarterly Journal of Operations Research.

R- Ouerdane, W., Dimopoulos, Y., Liapis, K., \& Moraitis, P. (2011). Towards automating Decision Aiding through Argumentation. Journal of Multi-Criteria Decision Analysis, 18(5-6), 289-309.

Bibliography (cont.)

R Tlili, A., Belahcène, K., Khaled, O., Mousseau, V., \& Ouerdane, W. (2022). Learning non-compensatory sorting models using efficient sat/maxsat formulations. European Journal of Operational Research, 298(3), 979-1006.

[^0]: ${ }^{1}$ Knowledge Representation and Reasoning
 ${ }^{2}$ Multi-Agent Systems

