From Preference Elicitation to Explaining Decisions: a Dialectical Perspective

Habilitation à Diriger les Recherches Defense

Wassila Ouerdane

December 8th, 2022

- My research domain: Artificial Intelligence (*Knowledge Representation and Reasoning*), Decision Theory;
- Focus of today: our contributions in *Multiple Criteria Decision Aiding*

Multiple Criteria Decision Aiding (MCDA)

- At least two actors: an expert, a user;
- set of alternatives/options described (evaluated) on several conflicting point of view/ criteria;

	Comfort	Restaurant	Commute time	Cost
hA	4*	no	35 min	120 \$
h _B	4*	yes	50 min	160 \$
hc	2*	yes	20 min	50 \$
h_D	2*	no	30 min	40 \$

- A decision problem: is option h_A better than option h_B ? Is option h_c good enough? ...
- · Sparse preferences between some options;
- Aggregation model containing aggregation procedures

Multiple Criteria Decision Aiding (MCDA)

- At least two actors: an expert, a user;
- set of alternatives/options described (evaluated) on several conflicting point of view/ criteria;
- A decision problem: is option h_a better than option h_b ? Is option h_c good enough? ...
- · Sparse preferences between some options;
- Aggregation model containing aggregation procedures

An illustrative Example

Options	Size	Material	Price	Colour	Style
а	small	Steel	450	Red	Classical
b	big	Leather	300	White	Fashion
С	medium	Steel	320	Pink	Classical
d	small	Leather	390	Pink	Sport

(1) **DA**: Given your information, *b* is the best option.

(2) **DM**: Why is that the case?

(3) DA: Because b is globally better than all other options

(4) DM: What does that mean?

(5) **DA**: Well... *b* is top on a majority of criteria considered: the price, the colour, and especially the style, it is so trendy!

(6) **DM**: But, why *b* is better than *c* on the price?

(7) DA: Because c is 20 euros more expensive than b.

(8) **DM**: I agree, but I see that the guarantee is very expensive especially for this watch. In fact I'm not sure to want the guarantee.

(9) DA: But c remains 5 euros more expensive than b.

(10) **DM**: I see, but this difference is not significant. And also I changed my mind: I would rather to have a classical model, I think it's more convenient for a daily use.

(11) DA: OK. In this case I recommend c as the best choice.

(12) **DM**: ...

An illustrative Example

Options	Size	Material	Price	Colour	Style
а	small	Steel	450	Red	Classical
b	big	Leather	300	White	Fashion
С	medium	Steel	320	Pink	Classical
d	small	Leather	390	Pink	Sport

(1) DA: Given your information, b is the best option

(2) DM: Why is that the case?

(3) DA: Because b is globally better than all other options

(4) DM: What does that mean?

(5) **DA**: Well... *b* is top on a majority of criteria considered: the price, the colour, and especially the style

it is so trendy!

(6) **DM**: But, why *b* is better than *c* on the price?

(7) **DA:** Because *c* is 20 euros more expensive than *b*.

(8) DM: I agree, but I see that the guarantee is very expensive especially for this watch. In fact

I'm not sure to want the guarantee.

(9) DA: But c remains 5 euros more expensive than b.

(10) DM: I see, but this difference is not significant. And also I changed my mind : I would rather

to have a classical model, I think it's more convenient for a daily use.

(11) **DA**: OK. In this case I recommend c as the best choice.

(12) DM: ...

MCDA with an Artificial agent !

Our research issues

Question 1

Question 2

For a given decision situation, if a given decision model is relevant to structure the decision maker's preferences, what should be the parameters' values to fully specify this model that corresponds to the decision-maker viewpoint?

Given a decision model and a set of preference information, is there a principled way to define simple complete explanations supporting a recommendation/decision?

Question 3

How to equip an artificial agent with adaptive behavior and model the system's reasoning to allow ``efficient" interaction with a user within a decisionaiding situation?

Preference Learning and Elicitation

Research issues

Question 1

Question 2

For a given decision situation, if a given decision model is relevant to structure the decision maker's preferences, what should be the parameters' values to fully specify this model that corresponds to the decision-maker viewpoint?

Given a decision model and a set of preference information, is there a principled way to define simple complete explanations supporting a recommendation/decision?

Question 3

How to equip an artificial agent with adaptive behavior and model the system's reasoning to allow ``efficient'' interaction with a user within a decisionaiding situation?

- Preference modeling issue: how to represent the user's preferences?
- · Computational issue: how to build and provide efficient device?

Our Contributions: Mathematical and Computational Tools

Preference Learning- Overview of our Results

Overview of our Results-Focus NCS

NCS: Non-Compensatory Sorting

- an ordered set $C^1 \prec \cdots \prec C^p$ of p predefined categories
- a set of objects to be sorted : $\mathbb{X} = \prod_{i \in \mathcal{N}} \mathbb{X}_i$ with $\mathcal{N} = \{1, \dots, n\}$
- A total preorder, noted \succeq_i on $X_i, i \in \mathcal{N}$
- approved sets $\langle \mathcal{A}_i^k \rangle_{i \in \mathcal{N}, \ k \in [2..p]}$ defined by a set of limiting profiles $\langle b_i^k \rangle_{i \in \mathcal{N}, \ k \in [2..p]}$
- a set of sufficient coalitions $\langle \mathcal{T}^k \rangle_{k \in [2..p]}$ declined per boundary.

$$NCS_{\omega}(x) = C^{k} \Leftrightarrow \begin{cases} \{i \in \mathcal{N} : x \in \mathcal{A}_{i}^{k}\} & \in \mathcal{T}^{k} \\ \text{and } \{i \in \mathcal{N} : x \in \mathcal{A}_{i}^{k+1}\} & \notin \mathcal{T}^{k+1} \end{cases}$$
(1)

where $\omega = (\langle \mathcal{A}_i^k \rangle_{i \in \mathcal{N}, \ k \in [2..p]}, \langle \mathcal{T}^k \rangle_{k \in [2..p]})$

[Bouyssou and Marchant, 2007a, 2007b]

Inputs: Reference assignments

	Cost	Acceleration	Breaking	Road hold	Category
<i>m</i> 1	16 973€	29.0 sec.	2.66	2.5	**
m2	18 342€	30.7 sec.	2.33	3	*
m3	15 335€	30.2 sec.	2	2.5	**
m4	18 971€	28.0 sec.	2.33	2	**
m5	17 537€	28.3 sec.	2.33	2.75	* * *
m6	15 131€	29.7 sec.	1.66	1.75	*

NSC - Learning/Disaggregation Step

Inputs: Reference assignments

	Cost	Acceleration	Breaking	Road hold	Category
<i>m</i> 1	16 973€	29.0 sec.	2.66	2.5	**
m2	18 342€	30.7 sec.	2.33	3	*
m3	15 335€	30.2 sec.	2	2.5	**
m4	18 971€	28.0 sec.	2.33	2	**
m5	17 537€	28.3 sec.	2.33	2.75	* * *
m ₆	15 131€	29.7 sec.	1.66	1.75	*

Profile	С	Α	В	R
*/ **	?	?	?	?
**/ * * *	?	?	?	?

Expected Outputs: Set of sufficient coalitions + Set of profiles

Finding a solution to an instance of the Inv-NCS problem:

$$(\mathcal{N}, \mathbb{X}, \langle \succeq_i \rangle_{i \in \mathcal{N}}, \mathbb{X}^*, \{C^1 \prec \ldots \prec C^p\}, \alpha)$$

where:

- N is a set of criteria;
- X is a set of alternatives;
- ⟨ ≿_i ⟩_{i∈N} ∈ X² are preferences on criterion i, i ∈ N, ≿_i ⊂ X² is a total pre-ordering of alternatives according to this criterion;
- $\mathbb{X}^{\star} \subset \mathbb{X}$ is a finite set of reference alternatives;
- * $\{C^1 \prec \ldots \prec C^p\}$ is a finite set of categories totally ordered by exigence level.
- α : X^{*} → {C¹ ≺ ... ≺ C^p} is an *assignment* of X^{*} to the categories.
 for a given category C^h, α⁻¹(C^h) = {x ∈ X^{*} : x ∈ C^h}.

Two SAT-based formulations [Belahcène et al., 2018a, 2018c; Tlili et al., 2022]

- 1. A SAT formulation based on *Coalitions*
 - Explicit representation of the parameter space
- 2. A SAT formulation based on Pairwise Separation
 - Approved sets are given;
 - Intuition: for every pair of alternatives (g accepted, b rejected), is there at least one criterion approving g but not b?
 - Compact SAT formulation; and Inv-NCS is NP-complete

 \sim The formulations are more efficient than state-of-the art MIP-based approach.

MaxSAT relaxations [Tlili et al., 2022]

- Take into account "noisy" data (imperfection in the assessment of performance, mistaken assignment, ...)
- Retrieve the model that restores "the most" examples of the Learning set.

- Majority Sorting Rule (MR-Sort)
 - Parameters to learn: limiting profiles $\langle b \rangle$, weights (w), threshold (λ);
 - Issue: How to deal with an ordered partition $C = (C^1, ..., C^h, ..., C^p)$ that is not monotone w.r.t the natural order of the criterion scale?
 - Contribution: taking into account single-peaked preferences an exact approach and a heuristic approach [Minoungou et al., 2022].
- Ranking with Multiple reference Points (RMP)
 - Parameters to learn: weights, reference points, and the lexicographic order on reference points;
 - Contribution: A MIP-based approach [Olteanu et al., 2021], a heuristicbased approach [Liu et al., 2014], and a Boolean-based approach [Belahcène et al., 2023a]

XAI & MCDA

Our research issues

Question 1

For a given decision situation, if a given decision model is relevant to structure the decision maker's preferences, what should be the parameters' values to fully specify this model that corresponds to the decision-maker viewpoint?

Question 2

Given a decision model and a set of preference information, is there a principled way to define simple complete explanations supporting a recommendation/decision?

Question 3

How to equip an artificial agent with adaptive behavior and model the system's reasoning to allow ``efficient" interaction with a user within a decisionaiding situation?

- Computation: How difficult is it to produce an explanation?
- **Simplicity**: Can we keep the explanations simple enough to be processed by a human decision-maker?
- **Completeness**: Can we explain every 'true' result, that can be deduced from the preference information and the model?
- **Soundness**: Could we explain 'false' results, claiming the impossibility of an event that could happen or the possibility of an event that cannot happen?

- Explanation shall be rigorous (important decision)
 → One shall bring proof (complete explanation);
- Explanation shall be understandable

→ One shall define a language which relates directly to the **preferential information** (e.g. not include the weights), and be conveyed in an **expressive** language to the recipient of this explanation.

• Explanation shall be relevant

 \leadsto One shall define what could be $\ensuremath{\textbf{pertinent}}$ to focus on within the decision situation.

• Explanation shall be simple

 \rightsquigarrow One shall define different **levels of complexity**. We want explanations to be "easy to process" by the recipient of the explanation.

Explanation in MCDA - Our Contributions

Explanation in MCDA - Our Contributions

Explanation in MCDA - Additive Model

• Preference derives from a value model

$$\exists V \text{ s.t. } x \succeq y \iff V(x) \ge V(y)$$

- Value is **additive** (i.e. $V(x) = \sum_i v_i(x_i)$)
- Case: binary evaluation

	а	b	с	d	е	f	g
S ₁	1	x	~	x	X	x	1
S ₂	X	1	X	X	X	1	1

 $\omega = \langle 128, 126, 77, 59, 52, 41, 37 \rangle$

	а	b	с	d	е	f	g
S 1	~	X	1	X	X	X	1
S ₂	X	\checkmark	X	X	X	\checkmark	\checkmark

 $\omega = \langle {\rm 128}, {\rm 126}, {\rm 77}, {\rm 59}, {\rm 52}, {\rm 41}, {\rm 37} \rangle$

$$\left. \begin{array}{l} \omega(s_1) = 128 + 77 + 37 = 242 \\ \omega(s_2) = 126 + 41 + 37 = 204 \end{array} \right\} \ \mathbf{s_1} \succ \mathbf{s_2}$$

Encoding: a vector {-1,0,+1}ⁿ of arguments in favour (*pro*) or against (*con*) or neutral (*neu*).

 $pro_{s_1} = \{a, c\}, con_{s_1} = \{b, f\}, while neu = \{d, e, g\}$

	а	b	с	d	е	f	g
S ₁	1	X	1	X	X	X	1
S ₂	X	1	X	×	×	~	~

 $\omega = \langle 128, 126, 77, 59, 52, 41, 37 \rangle$

$$\left. \begin{array}{l} \omega(s_1) = 128 + 77 + 37 = 242 \\ \omega(s_2) = 126 + 41 + 37 = 204 \end{array} \right\} \ \mathbf{s_1} \succ \mathbf{s_2}$$

Encoding: a vector {-1, 0, +1}ⁿ of arguments in favour (*pro*) or against (*con*) s₁, or neutral (*neu*).

$$pro_{s_1} = \{a, c\}, con_{s_1} = \{b, f\}, while neu = \{d, e, g\}$$

Question: why s_1 is preferred to s_2 ?

	а	b	с	d	е	f	g
S ₁	1	×	1	X	X	x	1
S ₂	X	\checkmark	X	X	X	1	\checkmark
02		•				•	

 $w = \langle 128, 126, 77, 59, 52, 41, 37 \rangle$

$$\begin{array}{c} \omega(s_1) = 128 + 77 + 37 = 242 \\ \omega(s_2) = 126 + 41 + 37 = 204 \end{array} \right\} \ \mathbf{s_1} \succ \mathbf{s_2}$$

$$pro_{s_1} = \{a, c\}, con_{s_1} = \{b, f\}, neu = \{d, e, g\}$$

Our proposal -STEP-WISE Explanations:

 $s_1(acg) \succ (bfg) s_2$

	а	b	с	d	е	f	g
S ₁	1	X	1	X	X	x	1
S ₂	X	\checkmark	X	X	X	1	1

 $w = \langle 128, 126, 77, 59, 52, 41, 37 \rangle$

$$\begin{array}{c} \omega(s_1) = 128 + 77 + 37 = 242 \\ \omega(s_2) = 126 + 41 + 37 = 204 \end{array} \right\} \ \mathbf{s_1} \succ \mathbf{s_2}$$

$$pro_{s_1} = \{a, c\}, con_{s_1} = \{b, f\}, neu = \{d, e, g\}$$

Our proposal -STEP-WISE Explanations:

 $s_1(acg) \succ (bcg) \succ (bfg) s_2$

	а	b	с	d	е	f	g
S ₁	1	x	1	X	X	×	1
S ₂	X	1	X	X	X	1	1

 $w = \langle 128, 126, 77, 59, 52, 41, 37 \rangle$

 $\begin{array}{l} \omega(s_1) = 128 + 77 + 37 = 242 \\ \omega(s_2) = 126 + 41 + 37 = 204 \end{array} \right\} \ \mathbf{s_1} \succ \mathbf{s_2} \\ \end{array}$

$$pro_{s_1} = \{a, c\}, con_{s_1} = \{b, f\}, neu = \{d, e, g\}$$

Our proposal -STEP-WISE Explanations:

	а	b	С	d	е	f	g
S ₁	1	x	1	X	X	X	1
S ₂	X	1	X	X	X	1	1

 $w = \langle 128, 126, 77, 59, 52, 41, 37 \rangle$

$$\begin{array}{l} \omega(s_1) = 128 + 77 + 37 = 242 \\ \omega(s_2) = 126 + 41 + 37 = 204 \end{array} \right\} \ \mathbf{s_1} \succ \mathbf{s_2} \label{eq:s1}$$

$$pro_{s_1} = \{a, c\}, con_{s_1} = \{b, f\}, neu = \{d, e, g\}$$

Our proposal -STEP-WISE Explanations:

 $s_1(acg) \succ (bcg) \succ (bfg) s_2 \checkmark$

 $s_1(acg) \succ (bef) \succ (bfg) s_2 \times$

the 1st comparison is *complex* as it involves 6 criteria.

 $s_1(acg) \succ (abc) \succ (bfg) s_2 \not X$ $(242 = \omega_a + \omega_c + \omega_g < \omega_a + \omega_b + \omega_c = 331)$

	а	b	с	d	е	f	g
S ₁	1	x	1	X	Х	X	1
S ₂	X	\checkmark	X	X	×	1	1

 $w = \langle 128, 126, 77, 59, 52, 41, 37 \rangle$

$$\begin{array}{l} \omega(s_1) = 128 + 77 + 37 = 242 \\ \omega(s_2) = 126 + 41 + 37 = 204 \end{array} \right\} \ \mathbf{s_1} \succ \mathbf{s_2}$$

$$pro_{s_1} = \{a, c\}, con_{s_1} = \{b, f\}, neu = \{d, e, g\}$$

Our proposal – STEP-WISE Explanations:

 $s_1(acg) \succ (bcg) \succ (bfg) s_2$

- S₁ (acg) is preferred over bcg, and that bcg is preferred over (bfg) S₂, so that our conclusion should hold, following a transitive reasoning.
- exhibits a collection of statements aiming at proving the decision.

- Break down the recommendation into "simple" statements;
- the sequence of statements formally support the recommendation.

$$\underbrace{[(acg, bcg), (bcg, bfg)]}_{\text{Argument Scheme}} \xrightarrow{tr} \underbrace{(acg, bfg)}_{\text{conclusion}}$$

- Principle-based approach: each scheme is attached to a number of well understood properties of the underlying decision model (e.g. transitivity)
- Cognitively bounded: the statements are constrained to remain "easy" to grasp

Additive Model- Covering scheme

For the conclusion: (*bfg*, *cde*). The premise [(*fg*, *c*), (*b*, *de*)] constitutes a covering scheme:

$$(fg, c), (b, de) \xrightarrow{cov} (bfg, cde)$$

Proof diagram

Visual representation

$$egin{array}{lll} fg \succ c & \stackrel{cp}{\longrightarrow} bfg \succ bc \ b \succ de & \stackrel{cp}{\longrightarrow} bc \succ cde \end{array}
ight\} \stackrel{tr}{\to} bfg \succ cde$$

Narrative representation

"As, all other things being equal, having free breakfast and wifi access is preferred to having a swimming pool (**fg**, **c**), and being close to the city is preferred than having a sports hall and a low tourist tax (**b**, **de**), we get that (**bfg**, **cde**)"

Our Contributions- Argument Schemes for the Additive Model

cancellation

m	Minimum	Median	Maximum	$ \mathcal{T}^m_{\succ} \setminus \mathcal{A}_{\succ} $
4	66.7%	66.7%	100%	3
5	72.0%	80.0%	100%	25
6	78.46%	84.62%	100%	130

ceteris paribus

For a *fully specified* model:

- # argument schemes → # patterns of reasoning
- # classes of difficulty of statements
- Complexity results on the existence of an explanation;
- Computing Explanations using ILP;
- Promising experimental results on the explanatory power of the covering scheme.

Our Explainability Contributions- The Big Picture

Dialectical Tools

Our research issues

Question 1

For a given decision situation, if a given decision model is relevant to structure the decision maker's preferences, what should be the parameters' values to fully specify this model that corresponds to the decision-maker viewpoint?

Question 2

Given a decision model and a set of preference information, is there a principled way to define simple complete explanations supporting a recommendation/decision?

Question 3

How to equip an artificial agent with adaptive behavior and model the system's reasoning to allow ``efficient'' interaction with a user within a decisionaiding situation? With multiple criteria context, there are many possible decision models. So when deciding whether $a \succ b$ globally, you may use e.g.:

- simple majority (π_{SM})—count criteria for $a \succ b$ vs. $b \succ a$
- simple weighted majority (π_{SWM})—same but with weighted criteria
- mean model (π_M)—sum of utilities of items for each criterion
- weighted sum model ($\pi_{\rm WS}$)—same but with weighted criteria
- outranking model—similar to π_{SWM} but includes a veto notion
- and many more...

With multiple criteria context, there are many possible decision models. So when deciding whether $a \succ b$ globally, you may use e.g.:

- simple majority (π_{SM})—count criteria for $a \succ b$ vs. $b \succ a$
- simple weighted majority (π_{SWM})—same but with weighted criteria
- mean model (π_M)—sum of utilities of items for each criterion
- weighted sum model (π_{WS})—same but with weighted criteria
- outranking model—similar to $\pi_{\rm SWM}$ but includes a veto notion
- and many more...

Questions:

- is there a principled way to do deal with the multiplicity of models?
- how, in practice, should such interaction be regulated?

Our contributions – Navigating among Decision Models

- We adopt an axiomatic approach
- Idea: to each model can be attached properties satisfied, e.g.:
 - cardinality: the difference of performance is meaningful
 - non anonymity: criteria are not exchangeable
 - Veto property
 - ...
- · least specific model is the one that satisfies more properties;

Our contributions – Argumentation-based Dialogue

• Rely on Multi-Agent Systems tools: interaction protocol, argumentation theory,

Speech acts at each iteration (grey nodes: DM, white nodes: DA).

Key locutions:

- Challenge(ϕ)—requests some statement that can serve as a basis for justifying or explaining ϕ .
- Argue(ϕ , p)—p is an explanation of ϕ .

Suppose that a user has to **rank** four options, e.g. hotels $\{a, b, c, d\}$ evaluated on a set of criteria:

 $\{c_1 : price, c_2 : location, c_3 : stars, c_4 : breakfast, c_5 : rating\}.$

	а	b	С	d
price	80	180	120	60
location	close	far	very far	very close
stars	*	* * **	* * *	**
breakfast	coffee machine	mini buffet	full buffet	none
rating	120/300	3/300	267/300	278/300

Which provides default preferential information:

price :	$d \succ_{c_1} a \succ_{c_1} c \succ_{c_1} b;$
location:	$d \succ_{c_2} a \succ_{c_2} b \succ_{c_2} c_3$
stars:	$b \succ_{c_3} c \succ_{c_3} a \succ_{c_3} d;$
breakfast:	$c \succ_{c_4} b \succ_{c_4} a \succ_{c_4} d$
rating:	$b \succ_{c_5} a \succ_{c_5} c \succ_{c_5} d$

$$\begin{split} & \mathcal{KB}_{p}^{(1)} \text{ contains all statements } [x \succ_{c_{i}} y] \\ & \mathcal{KB}_{\phi}^{(1)} = \emptyset \\ & \phi_{c}^{(1)} = [b \succ a \succ c \succ d] \\ & miss(\phi_{c}^{(1)}) = \phi_{c}^{(1)} \end{split}$$

$$\begin{split} & \mathcal{KB}_{p}^{(1)} \text{ contains all statements } [x \succ_{c_{i}} y] \\ & \mathcal{KB}_{\phi}^{(1)} = \emptyset \\ & \phi_{c}^{(1)} = [b \succ a \succ c \succ d] \\ & miss(\phi_{c}^{(1)}) = \phi_{c}^{(1)} \end{split}$$

DA:Assert($\phi_1^{(1)}$), $\phi_1^{(1)} = \phi_c^{(1)}$

$$\begin{split} & \mathcal{KB}_{p}^{(1)} \text{ contains all statements } [x \succ_{c_{i}} y] \\ & \mathcal{KB}_{\phi}^{(1)} = \emptyset \\ & \phi_{c}^{(1)} = [b \succ a \succ c \succ d] \\ & miss(\phi_{c}^{(1)}) = \phi_{c}^{(1)} \end{split}$$

DM:**Challenge**($\phi_3^{(1)}$), $\phi_3^{(1)} = \{[b \succ a]\}$ <u>Note</u>: $\phi_3^{(1)} \subseteq \phi_c^{(1)} = [b \succ a \succ c \succ d]$

 $miss(\phi_{c}^{(1)}) = \phi_{c}^{(1)}$

$$\begin{split} & \mathcal{KB}_{p}^{(1)} \text{ contains all statements } [x \succ_{c_{i}} y] \\ & \mathcal{KB}_{\phi}^{(1)} = \emptyset \\ & \phi_{c}^{(1)} = [b \succ a \succ c \succ d] \\ & miss(\phi_{c}^{(1)}) = \phi_{c}^{(1)} \end{split}$$

DM:**Contradict**($\phi_4^{(1)}$), $\phi_4^{(1)} = \{[a \succ b]\}$

$$\begin{split} & \mathcal{KB}_{p}^{(1)} \text{ contains all statements } [\textbf{x} \succ_{c_{i}} \textbf{y}] \\ & \mathcal{KB}_{\phi}^{(1)} = \emptyset \\ & \phi_{c}^{(1)} = [b \succ a \succ c \succ d] \\ & miss(\phi_{c}^{(1)}) = \phi_{c}^{(1)} \end{split}$$

DA:**Challenge** $(\phi_6^{(1)}), \phi_6^{(1)} = \{[a \succ b]\}$

$$\begin{split} & \mathcal{KB}_{p}^{(1)} \text{ contains all statements } [x \succ_{c_{i}} y] \\ & \mathcal{KB}_{\phi}^{(1)} = \emptyset \\ & \phi_{c}^{(1)} = [b \succ a \succ c \succ d] \\ & miss(\phi_{c}^{(1)}) = \phi_{c}^{(1)} \end{split}$$

 $\begin{aligned} & \mathsf{DM:} Argue(\phi_7^{(1)}, p_7^{(1)}), \phi_7^{(1)} = \{[a \succ b]\} \\ & p_7^{(1)} = \{[a \succ_{c_1} b], [a \succ_{c_2} b] \\ & [c_1 = strong], [c_2 = strong]\} \end{aligned}$

$$\begin{split} \mathcal{KB}_{p}^{(2)} &= \mathcal{KB}_{p}^{(1)} \cup \{[c_{1}, c_{2} = strong]\}\\ \mathcal{KB}_{\phi}^{(2)} &= \emptyset\\ \phi_{c}^{(2)} &= [d \succ a \succ b \succ c]\\ miss(\phi_{c}^{(2)}) &= \phi_{c}^{(2)} \end{split}$$

<u>Note</u>: α_{c_1} and α_{c_2} set to 2 α_{c_3} , α_{c_4} , α_{c_5} set to 1 so $d \succ a$: With the idea that preferential information feedback is triggered by the user facing actual recommendations, we formalized:

- a conceptual idea for navigating among models [Labreuche et al., 2015]
- an interaction protocol based on argumentation theory [Labreuche et al., 2015; Ouerdane et al., 2011], where:
 - rules and conditions under which we can have a "coherent" interaction in a decision support context, are specified
 - Termination can be guaranteed with very few assumptions
 - Critics/feedback through Critical Questions (attached to argument schemes).

Summary

Summary of Our Contributions

- Axe 1– Methods for representing, acquiring and learning preferences
 - Formal theory about preferences (representation, learning) and decisions
 - Domains: Decision Theory, MCDA, Operational Research;
- Axe 2- Methods for constructing and generating explanations.
 - Formal language to communicate the results (recommendations) and "convince" the user.
 - Domains: Artificial Intelligence (KRR¹, Argumentation Theory, Logic)
- Axe 3– Methods and tools for structuring and conducing the interaction.
 - Formal language to represent the dialogue/interactions and its outcomes;
 - Domains: Artificial Intelligence (KRR, MAS², Argumentation theory)

¹Knowledge Representation and Reasoning ²Multi-Agent Systems

Perspectives

Main topic: Explanation-based mixed initiative interaction

How to?

- · Interleave learning, recommendation and explanation tasks?
- Express and present an explanation?
- Model and manage inconsistency, uncertainty?
- Assess and evaluate the outcomes?
- ...

Perspectives

Main topic: Explanation-based mixed initiative interaction

For what?

- PhD Thesis of Dao Thauvin. *Explanatory dialogue for the interpretation of visual scenes.* Co-supervision with Stephane Herbin (ONERA) and Céline Hudelot (MICS). – Start 11/2022.
- Keywords: Computer Vision, XAI, Argumentation-based Dialogue

Perspectives

Main topic: Explanation-based mixed initiative interaction

For what?

- PhD Thesis Charlotte Calye. Interpretable AI methods for medical research on autoimmune diseases. Supervision, in collaboration with ScientaLab and Céline Hudelot (MICS) – Start 02/2023.
- Keywords: EHR (Electronic Health Records), XAI, Dialog Systems.

All this was not possible without...

- All my PhD students;
- My co-authors and colleagues;
- Family and friends.

Thank You for your Attention

References

Bibliography

- Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., & Ouerdane, W. (2017a). Explaining robust additive utility models by sequences of preference swaps. *Theory and Decision*, 82(2), 151–183.
- Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., & Ouerdane, W. (2017b). A model for accountable ordinal sorting. Proceedings of the 26th IJCAI, 814–820.
- Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., & Ouerdane, W. (2018a). Accountable approval sorting. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018).
- Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., & Ouerdane, W. (2018b). An efficient SAT formulation for learning multiple criteria non-compensatory sorting rules from examples. *Computers & Operations Research*, 97, 58–71.

- Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., & Ouerdane, W.
 (2018c). An efficient SAT formulation for learning multiple criteria non-compensatory sorting rules from examples. *Computers & Operations Research*, 97, 58–71.
- Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., & Ouerdane, W. (2019). Comparing options with argument schemes powered by cancellation. *Proceedings of IJCAI-19*, 1537–1543.
- Belahcène, K., Mousseau, V., Ouerdane, W., Pirlot, M., & Sobrie, O. (2023a). Ranking with multiple reference points: Efficient sat-based learning procedures. Computers & Operations Research, 150, 106054.
- Belahcène, K., Mousseau, V., Ouerdane, W., Pirlot, M., & Sobrie, O. (2023b). Ranking with multiple reference points: Efficient sat-based learning procedures. *Computers & Operations Research*, 150, 106054.

- Bouyssou, D., & Marchant, T. (2007a). An axiomatic approach to noncompensatory sorting methods in MCDM, I: the case of two categories. European Journal of Operational Research, 178(1), 217–245.
- Bouyssou, D., & Marchant, T. (2007b). An axiomatic approach to noncompensatory sorting methods in MCDM, II: more than two categories. European Journal of Operational Research, 178(1), 246–276.
- Coste-Marquis, S., & Marquis, P. (2020). From Explanations to Intelligible Explanations [Workshop at KR'20]. 1st International Workshop on Explainable Logic-Based Knowledge Representation (XLoKR'20).
- Krantz, D., Luce, R., Suppes, P., & Tversky, A. (1971). Foundations of measurement (Vol. 1: Additive and polynomial representations). Academic Press, New York.
 - Labreuche, C., Maudet, N., & Ouerdane, W. (2011). Minimal and complete explanations for critical multi-attribute decisions. *ADT*, 121–134.

- Labreuche, C., Maudet, N., & Ouerdane, W. (2012). Justifying dominating options when preferential information is incomplete. *ECAI 2012.*, 486–491.
- Labreuche, C., Maudet, N., Ouerdane, W., & Parsons, S. (2015). A dialogue game for recommendation with adaptive preference models. *Proceedings* AAMAS, 959–967.
 - Leroy, A., Mousseau, V., & Pirlot, M. (2011). Learning the parameters of a multiple criteria sorting method. International Conference on Algorithmic Decision Theory, 219–233.
- Liu, J., Ouerdane, W., & Mousseau, V. (2014). A metaheuristic approach for preference learning in multicriteria ranking based on reference points. Proceedings of the 2nd workshop "From multiple criteria Decision Aid to Preference Learning" (DA2PL), 76–86.
 - Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38.

- Minoungou, P., Mousseau, V., Ouerdane, W., & Scotton, P. (2020). Learning an MR-sort model from data with latent criteria preference direction. *The 5th workshop from multiple criteria Decision Aid to Preference Learning (DA2PL)*.
- Minoungou, P., Mousseau, V., Ouerdane, W., & Scotton, P. (2022). A MIP-based approach to learn MR-Sort models with single-peaked preferences. Annals of Operations Research.
- Olteanu, A. L., Belahcène, K., Mousseau, V., Ouerdane, W., Rolland, A., & Zheng, J. (2021). Preference elicitation for a ranking method based on multiple reference profiles [to appear]. 4OR: A Quarterly Journal of Operations Research.

Ouerdane, W., Dimopoulos, Y., Liapis, K., & Moraitis, P. (2011). Towards automating Decision Aiding through Argumentation. *Journal of Multi-Criteria Decision Analysis*, 18(5-6), 289–309.

Tlili, A., Belahcène, K., Khaled, O., Mousseau, V., & Ouerdane, W. (2022). Learning non-compensatory sorting models using efficient sat/maxsat formulations. European Journal of Operational Research, 298(3), 979–1006.